QSMbly runs entirely in your web browser using WebAssembly. All processing occurs locally on your machine.
QSMbly compiles its processing algorithms from Rust to WebAssembly (WASM), which runs natively in the browser at near-native speed. Your NIfTI files are read directly into browser memory, processed locally, and results are displayed without any network transfer.
QSMbly does not use analytics, tracking, cookies, or any external services. The only network request is loading the application itself (HTML, JavaScript, and WASM files).
Stewart, A.W. (2026). "QSMbly: Browser-based Quantitative Susceptibility Mapping."
https://github.com/astewartau/qsmblyQSMbly implements algorithms from the following publications. Please cite the relevant papers if you use these methods in your research.
Smith, S.M. (2002). "Fast robust automated brain extraction." Human Brain Mapping, 17(3):143-155.
DOI: 10.1002/hbm.10062Dymerska, B., Eckstein, K., Bachrata, B., Siow, B., Trattnig, S., Shmueli, K., Robinson, S.D. (2021). "Phase Unwrapping with a Rapid Opensource Minimum Spanning TreE AlgOrithm (ROMEO)." Magnetic Resonance in Medicine, 85(4):2294-2308.
DOI: 10.1002/mrm.28563Schofield, M.A., Zhu, Y. (2003). "Fast phase unwrapping algorithm for interferometric applications." Optics Letters, 28(14):1194-1196.
DOI: 10.1364/OL.28.001194Eckstein, K., Dymerska, B., Bachrata, B., Bogner, W., Poljanc, K., Trattnig, S., Robinson, S.D. (2018). "Computationally Efficient Combination of Multi-channel Phase Data From Multi-echo Acquisitions (ASPIRE)." Magnetic Resonance in Medicine, 79:2996-3006.
DOI: 10.1002/mrm.26963Eckstein, K., Trattnig, S., Robinson, S.D. (2019). "A Simple Homogeneity Correction for Neuroimaging at 7T." Proc. ISMRM 27th Annual Meeting.
Wu, B., Li, W., Guidon, A., Liu, C. (2012). "Whole brain susceptibility mapping using compressed sensing." Magnetic Resonance in Medicine, 67(1):137-147.
DOI: 10.1002/mrm.23000Schweser, F., Deistung, A., Lehr, B.W., Reichenbach, J.R. (2011). "Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase." NeuroImage, 54(4):2789-2807.
DOI: 10.1016/j.neuroimage.2010.10.070Wen, Y., Zhou, D., Liu, T., Spincemaille, P., Wang, Y. (2014). "An iterative spherical mean value method for background field removal in MRI." Magnetic Resonance in Medicine, 72(4):1065-1071.
DOI: 10.1002/mrm.24998Liu, T., Khalidov, I., de Rochefort, L., Spincemaille, P., Liu, J., Tsiouris, A.J., Wang, Y. (2011). "A novel background field removal method for MRI using projection onto dipole fields." NMR in Biomedicine, 24(9):1129-1136.
DOI: 10.1002/nbm.1670Zhou, D., Liu, T., Spincemaille, P., Wang, Y. (2014). "Background field removal by solving the Laplacian boundary value problem." NMR in Biomedicine, 27(3):312-319.
DOI: 10.1002/nbm.3064Yaghmaie, N., Syeda, W., et al. (2021). "QSMART: Quantitative Susceptibility Mapping Artifact Reduction Technique." NeuroImage, 231:117701.
DOI: 10.1016/j.neuroimage.2020.117701Shmueli, K., de Zwart, J.A., van Gelderen, P., Li, T.Q., Dodd, S.J., Duyn, J.H. (2009). "Magnetic susceptibility mapping of brain tissue in vivo using MRI phase data." Magnetic Resonance in Medicine, 62(6):1510-1522.
DOI: 10.1002/mrm.22135Bilgic, B., et al. (2014). "Fast image reconstruction with L2-regularization." Journal of Magnetic Resonance Imaging, 40(1):181-191.
DOI: 10.1002/jmri.24365Bilgic, B., Fan, A.P., Polimeni, J.R., et al. (2014). "Fast quantitative susceptibility mapping with L1-regularization and automatic parameter selection." Magnetic Resonance in Medicine, 72(5):1444-1459.
DOI: 10.1002/mrm.25029Kames, C., Wiggermann, V., Rauscher, A. (2018). "Rapid two-step dipole inversion for susceptibility mapping with sparsity priors." NeuroImage, 167:276-283.
DOI: 10.1016/j.neuroimage.2017.11.018Kames, C., Wiggermann, V., Rauscher, A. (2018). "Rapid two-step dipole inversion for susceptibility mapping with sparsity priors." NeuroImage, 167:276-283.
DOI: 10.1016/j.neuroimage.2017.11.018Liu, T., Liu, J., de Rochefort, L., et al. (2011). "Morphology enabled dipole inversion (MEDI) from a single-angle acquisition." Magnetic Resonance in Medicine, 66(3):777-783.
DOI: 10.1002/mrm.22816Li, W., Wang, N., Yu, F., et al. (2015). "A method for estimating and removing streaking artifacts in quantitative susceptibility mapping." NeuroImage, 108:111-122.
DOI: 10.1016/j.neuroimage.2014.12.043Langkammer, C., Bredies, K., Poser, B.A., et al. (2015). "Fast quantitative susceptibility mapping using 3D EPI and total generalized variation." NeuroImage, 111:622-630.
DOI: 10.1016/j.neuroimage.2015.02.041Chatnuntawech, I., McDaniel, P., et al. (2017). "Single-step quantitative susceptibility mapping with variational penalties." NMR in Biomedicine, 30(4):e3570.
DOI: 10.1002/nbm.3570Yaghmaie, N., Syeda, W., Wu, C., Zhang, Y., Zhang, T., Burrows, E.L., Moffat, B.A., Wright, D.K., Glarin, R., Kolbe, S., Johnston, L.A. (2021). "QSMART: Quantitative Susceptibility Mapping Artifact Reduction Technique." NeuroImage, 231:117701.
DOI: 10.1016/j.neuroimage.2020.117701Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A. (1998). "Multiscale vessel enhancement filtering." MICCAI'98, LNCS vol 1496, 130-137.
DOI: 10.1007/BFb0056195Meyer, M., Desbrun, M., Schroder, P., Barr, A.H. (2003). "Discrete Differential-Geometry Operators for Triangulated 2-Manifolds." Visualization and Mathematics III, 35-57.
DOI: 10.1007/978-3-662-05105-4_2Deistung, A., Schweser, F., Reichenbach, J.R. (2017). "Overview of quantitative susceptibility mapping." NMR in Biomedicine, 30(4):e3569.
DOI: 10.1002/nbm.3569Schweser, F., Deistung, A., Reichenbach, J.R. (2016). "Foundations of MRI phase imaging and processing for Quantitative Susceptibility Mapping (QSM)." Zeitschrift fur Medizinische Physik, 26(1):6-34.
DOI: 10.1016/j.zemedi.2015.10.002Harada, T., Kudo, K., Fujima, N., et al. (2022). "Quantitative Susceptibility Mapping: Basic Methods and Clinical Applications." RadioGraphics, 42(4):1161-1176.
DOI: 10.1148/rg.210054The following repositories were used as references: